allfeeds.ai

 

Brain Inspired  

Brain Inspired

Where Neuroscience and AI Converge

Author: Paul Middlebrooks

Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.
Be a guest on this podcast

Language: en-us

Genres: Natural Sciences, Science, Technology

Contact email: Get it

Feed URL: Get it

iTunes ID: Get it


Get all podcast data

Listen Now...

BI 220 Michael Breakspear and Mac Shine: Dynamic Systems from Neurons to Brains
Tuesday, 9 September, 2025

Support the show to get full episodes, full archive, and join the Discord community. The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists. Read more about our partnership: https://www.thetransmitter.org/partners/ Sign up for the “Brain Inspired” email alerts to be notified every time a new “Brain Inspired” episode is released: https://www.thetransmitter.org/newsletters/ To explore more neuroscience news and perspectives, visit thetransmitter.org. What changes and what stays the same as you scale from single neurons up to local populations of neurons up to whole brains? How tuning parameters like the gain in some neural populations affects the dynamical and computational properties of the rest of the system. Those are the main questions my guests today discuss. Michael Breakspear is a professor of Systems Neuroscience and runs the Systems Neuroscience Group at the University of Newcastle in Australia. Mac Shine is back, he was here a few years ago. Mac runs the Shine Lab at the University of Sidney in Australia. Michael and Mac have been collaborating on the questions I mentioned above, using a systems approach to studying brains and cognition. The short summary of what they discovered in their first collaboration is that turning up or down the gain across broad networks of neurons in the brain affects integration - working together - and segregation - working apart. They map this gain modulation on to the ascending arousal pathway, in which the locus coeruleus projects widely throughout the brain distributing noradrenaline. At a certain sweet spot of gain, integration and segregation are balanced near a bifurcation point, near criticality, which maximizes properties that are good for cognition. In their recent collaboration, they used a coarse graining procedure inspired by physics to study the collective dynamics of various sizes of neural populations, going from single neurons to large populations of neurons. Here they found that despite different coding properties at different scales, there are also scale-free properties that suggest neural populations of all sizes, from single neurons to brains, can do cognitive stuff useful for the organism. And they found this is a conserved property across many different species, suggesting it's a universal principle of brain dynamics in general. So we discuss all that, but to get there we talk about what a systems approach to neuroscience is, how systems neuroscience has changed over the years, and how it has inspired the questions Michael and Mac ask. Breakspear: Systems Neuroscience Group. @DrBreaky. Shine: Shine Lab. @jmacshine. Related papers Dynamic models of large-scale brain activity Metastable brain waves The modulation of neural gain facilitates a transition between functional segregation and integration in the brain Multiscale Organization of Neuronal Activity Unifies Scale-Dependent Theories of Brain Function. The brain that controls itself. Metastability demystified — the foundational past, the pragmatic present and the promising future. Generation of surrogate brain maps preserving spatial autocorrelation through random rotation of geometric eigenmodes. Related episodes BI 212 John Beggs: Why Brains Seek the Edge of Chaos BI 216 Woodrow Shew and Keith Hengen: The Nature of Brain Criticality BI 121 Mac Shine: Systems Neurobiology Read the transcript. 0:00 - Intro 4:28 - Neuroscience vs neurobiology 8:01 - Systems approach 26:52 - Physics for neuroscience 33:15 - Gain and bifurcation: earliest collaboration 55:32 - Multiscale organization 1:17:54 - Roadblocks

 

We also recommend:


HD Brief
Hd Brief

My Elementary Schools
Larry Nelson - Instructional Technology

Watch.Steve
Steve Klabnik

Sky And Snuppy's Podcast
Sky And Snuppy

Ask The Geek
Reed Daniel

Home: On - a DIY home automation podcast from The Digital Media Zone
Richard Gunther

SMB Technology News Podcast | SMB Jumpstreet
Wayne Schulz and Peter Wolf

Geordie Geek
David Parkinson

Hyperlink Radio: Brands, Technology, and News
Winning Edits: Delivering Stories About the Future of Commerce, Technology, and the World Around Us

The Psychology Behind Inside Out
insideoutpsychology

Put A Ring on it
Put A Ring on it

bitcoinheiros
Bitcoinheiros do Brasil